运行时的注解问题¶
类型注释的惯用用法有时可能会与给定版本的 Python 认为的合法代码相冲突。 本节描述这些场景并解释如何让代码再次运行。 一般来说,我们可以使用三种工具:
- 使用
from __future__ import annotations
(PEP 563
) (此行为最终可能会在未来的 Python 版本中成为默认行为) - 使用字符串文字类型或类型注释
- 使用
typing.TYPE_CHECKING
在讨论您可能遇到的具体问题之前,我们会先提供这些内容的描述。
Annotation issues at runtime
Idiomatic use of type annotations can sometimes run up against what a given version of Python considers legal code. This section describes these scenarios and explains how to get your code running again. Generally speaking, we have three tools at our disposal:
- Use of
from __future__ import annotations
(PEP 563
) (this behaviour may eventually be made the default in a future Python version) - Use of string literal types or type comments
- Use of
typing.TYPE_CHECKING
We provide a description of these before moving onto discussion of specific problems you may encounter.
字符串文字类型和类型注释¶
Mypy 允许您使用以 # type:
形式添加类型注释。 例如:
a = 1 # type: int
def f(x): # type: (int) -> int
return x + 1
# 具有多个参数的函数的替代类型注释语法
def send_email(
address, # type: Union[str, List[str]]
sender, # type: str
cc, # type: Optional[List[str]]
subject='',
body=None # type: List[str]
):
# type: (...) -> bool
类型注释不会导致运行时错误,因为 Python 不会评估注释。
以类似的方式,使用字符串文字类型可以回避可能导致运行时错误的注释问题。
任何类型都可以作为字符串文字输入,并且您可以自由地将字符串文字类型与非字符串文字类型组合:
def f(a: list['A']) -> None: ... # OK, 防止 NameError 因为 A 是稍后定义的
def g(n: 'int') -> None: ... # 同样 OK, 虽然没用
class A: pass
# type:
注释和 存根文件
中永远不需要字符串文字类型。
字符串文字类型必须稍后在同一模块中定义(或导入)。 它们不能用于留下未解决的跨模块引用。(有关处理导入周期,请参阅 import-cycles
.)
String literal types and type comments
Mypy allows you to add type annotations using # type:
type comments. For example:
a = 1 # type: int
def f(x): # type: (int) -> int
return x + 1
# Alternative type comment syntax for functions with many arguments
def send_email(
address, # type: Union[str, List[str]]
sender, # type: str
cc, # type: Optional[List[str]]
subject='',
body=None # type: List[str]
):
# type: (...) -> bool
Type comments can't cause runtime errors because comments are not evaluated by Python.
In a similar way, using string literal types sidesteps the problem of annotations tha would cause runtime errors.
Any type can be entered as a string literal, and you can combine string-literal types with non-string-literal types freely:
def f(a: list['A']) -> None: ... # OK, prevents NameError since A is defined later
def g(n: 'int') -> None: ... # Also OK, though not useful
class A: pass
String literal types are never needed in # type:
comments and stub files
.
String literal types must be defined (or imported) later in the same module. They cannot be used to leave cross-module references unresolved. (For dealing with import cycles, see import-cycles
.)
(future-annotations)=
Future 模块注解导入 (PEP 563)¶
这里描述的许多问题都是由 Python 尝试评估注释引起的。 未来的 Python 版本(可能是 Python 3.12)将默认不再尝试计算函数和变量注释。 Python 3.7 及更高版本中通过使用 from __future__ import annotation
提供了此行为。
这可以被认为是所有函数和变量注释的自动字符串文字化。 请注意,函数和变量注释仍然需要是有效的 Python 语法。 有关更多详细信息,请参阅PEP 563
.
Note
即使使用 __future__
导入,在某些情况下仍然可能需要字符串文字或导致错误,通常涉及在以下情况中使用前置引用或泛型:
type aliases
;type narrowing
;- 类型定义 (参考
typing.TypeVar
,typing.NewType
,typing.NamedTuple
); - 基类.
# 基类示例
from __future__ import annotations
class A(tuple['B', 'C']): ... # 这里需要字符串文字类型
class B: ...
class C: ...
Warning
某些库可能具有动态评估注释的用例,例如通过使用typing.get_type_hints
或eval
。 如果您的注释在评估时会引发错误(例如使用 Python 3.9 的 PEP 604
语法),则在使用此类时可能需要小心这样的库。
Future annotations import (PEP 563)
Many of the issues described here are caused by Python trying to evaluate annotations. Future Python versions (potentially Python 3.12) will by default no longer attempt to evaluate function and variable annotations. This behaviour is made available in Python 3.7 and later through the use of from __future__ import annotations
.
This can be thought of as automatic string literal-ification of all function and variable annotations. Note that function and variable annotations are still required to be valid Python syntax. For more details, see PEP 563
.
Note
Even with the __future__
import, there are some scenarios that could still require string literals or result in errors, typically involving use of forward references or generics in:
type aliases
;type narrowing
;- type definitions (see
typing.TypeVar
,typing.NewType
,typing.NamedTuple
); - base classes.
# base class example
from __future__ import annotations
class A(tuple['B', 'C']): ... # String literal types needed here
class B: ...
class C: ...
Warning
Some libraries may have use cases for dynamic evaluation of annotations, for instance, through use of typing.get_type_hints
or eval
. If your annotation would raise an error when evaluated (say by using PEP 604
syntax with Python 3.9), you may need to be careful when using such libraries.
typing.TYPE_CHECKING 变量¶
typing
模块定义了一个 typing.TYPE_CHECKING
常量在运行时为 False
,但在类型检查时被视为 True
。
在 if TYPE_CHECKING
代码的内部: 代码不会在运行时执行,因此它提供了一种方便的方法来告诉 mypy 某些内容,而无需在运行时评估代码。 这对于解决循环导入最有用。
typing.TYPE_CHECKING
The typing
module defines a typing.TYPE_CHECKING
constant that is False
at runtime but treated as True
while type checking.
Since code inside if TYPE_CHECKING:
is not executed at runtime, it provides a convenient way to tell mypy something without the code being evaluated at runtime. This is most useful for resolving import cycles
.
类名前置引用¶
Python 不允许在定义类之前引用类对象(也称为前向引用)。 因此这段代码不能按预期工作:
def f(x: A) -> None: ... # NameError: name "A" is not defined
class A: ...
从 Python 3.7 开始,您可以添加 from __future__ import annotations
来解决此问题,如前所述:
from __future__ import annotations
def f(x: A) -> None: ... # OK
class A: ...
对于 Python 3.6 及更低版本,您可以将类型输入为字符串文字或类型注释:
def f(x: 'A') -> None: ... # OK
# Also OK
def g(x): # type: (A) -> None
...
class A: ...
当然,您可以将函数定义移到类定义之后,而不是使用将来的注释导入或字符串文字类型。 但这并不总是可取的,甚至是不可能的。
Class name forward references
Python does not allow references to a class object before the class is defined (aka forward reference). Thus this code does not work as expected:
def f(x: A) -> None: ... # NameError: name "A" is not defined
class A: ...
Starting from Python 3.7, you can add from __future__ import annotations
to
resolve this, as discussed earlier:
from __future__ import annotations
def f(x: A) -> None: ... # OK
class A: ...
For Python 3.6 and below, you can enter the type as a string literal or type comment:
def f(x: 'A') -> None: ... # OK
# Also OK
def g(x): # type: (A) -> None
...
class A: ...
Of course, instead of using future annotations import or string literal types, you could move the function definition after the class definition. This is not always desirable or even possible, though.
循环导入¶
当模块 A 导入模块 B 并且模块 B 导入模块 A(可能是间接的,例如 A -> B -> C -> A
)时,会发生导入循环。 有时,为了添加类型注释,您必须向模块添加额外的导入,而这些导入会导致以前不存在的循环。 这可能会导致运行时出现错误,例如:
ImportError: cannot import name 'b' from partially initialized module 'A' (most likely due to a circular import)
如果这些循环在运行程序时确实成为问题,那么有一个技巧:如果仅类型注释需要导入并且您正在使用 a) future comments import
,或 b) 相关注释的字符串文字或类型注释,您可以将导入写入 if TYPE_CHECKING:
中,这样它们就不会在运行时执行。 例子:
文件 foo.py
:
from typing import TYPE_CHECKING
if TYPE_CHECKING:
import bar
def listify(arg: 'bar.BarClass') -> 'list[bar.BarClass]':
return [arg]
文件 bar.py
:
from foo import listify
class BarClass:
def listifyme(self) -> 'list[BarClass]':
return listify(self)
Import cycles
An import cycle occurs where module A imports module B and module B imports module A (perhaps indirectly, e.g. A -> B -> C -> A
). Sometimes in order to add type annotations you have to add extra imports to a module and those imports cause cycles that didn't exist before. This can lead to errors at runtime like:
ImportError: cannot import name 'b' from partially initialized module 'A' (most likely due to a circular import)
If those cycles do become a problem when running your program, there's a trick: if the import is only needed for type annotations and you're using a) the future annotations import
, or b) string literals or type comments for the relevant annotations, you can write the imports inside if TYPE_CHECKING:
so that they are not executed at runtime. Example:
File foo.py
:
from typing import TYPE_CHECKING
if TYPE_CHECKING:
import bar
def listify(arg: 'bar.BarClass') -> 'list[bar.BarClass]':
return [arg]
File bar.py
:
from foo import listify
class BarClass:
def listifyme(self) -> 'list[BarClass]':
return listify(self)
使用存根中的泛型类,但运行时不用¶
有些类在存根中声明为 generic
,但不是在运行时声明。
在 Python 3.8 及更早版本中,标准库中有几个示例,例如 os.PathLike
和 queue.Queue
。 为这样的类添加下标将导致运行时错误:
from queue import Queue
class Tasks(Queue[str]): # TypeError: 'type' object is not subscriptable
...
results: Queue[int] = Queue() # TypeError: 'type' object is not subscriptable
为了避免在注释中使用这些泛型而产生错误,只需使用 future comments import
(或字符串文字或类型 Python 3.6 及以下版本的注释)。
为了避免从这些类继承时出现错误,事情会稍微复杂一些,您需要使用 [typing.TYPE_CHECKING
](https://mypy.readthedocs.io/en/latest/runtime_troubles.html#typing-type- 检查):
from typing import TYPE_CHECKING
from queue import Queue
if TYPE_CHECKING:
BaseQueue = Queue[str] # this is only processed by mypy
else:
BaseQueue = Queue # this is not seen by mypy but will be executed at runtime
class Tasks(BaseQueue): # OK
...
task_queue: Tasks
reveal_type(task_queue.get()) # Reveals str
如果您的子类也是通用的,您可以使用以下内容:
from typing import TYPE_CHECKING, TypeVar, Generic
from queue import Queue
_T = TypeVar("_T")
if TYPE_CHECKING:
class _MyQueueBase(Queue[_T]): pass
else:
class _MyQueueBase(Generic[_T], Queue): pass
class MyQueue(_MyQueueBase[_T]): pass
task_queue: MyQueue[str]
reveal_type(task_queue.get()) # Reveals str
在Python 3.9中,我们可以直接继承Queue[str]
或Queue[T]
,因为它的[queue.Queue
](https://docs.python.org/3/library/queue.html#queue.Queue 实现了 __class_getitem__
,因此类对象可以在运行时使用下标而不会出现问题。
Using classes that are generic in stubs but not at runtime
Some classes are declared as generic
in stubs, but not at runtime.
In Python 3.8 and earlier, there are several examples within the standard library, for instance, os.PathLike
and queue.Queue
. Subscripting
such a class will result in a runtime error:
from queue import Queue
class Tasks(Queue[str]): # TypeError: 'type' object is not subscriptable
...
results: Queue[int] = Queue() # TypeError: 'type' object is not subscriptable
To avoid errors from use of these generics in annotations, just use the future annotations import
(or string literals or type
comments for Python 3.6 and below).
To avoid errors when inheriting from these classes, things are a little more
complicated and you need to use typing.TYPE_CHECKING
:
from typing import TYPE_CHECKING
from queue import Queue
if TYPE_CHECKING:
BaseQueue = Queue[str] # this is only processed by mypy
else:
BaseQueue = Queue # this is not seen by mypy but will be executed at runtime
class Tasks(BaseQueue): # OK
...
task_queue: Tasks
reveal_type(task_queue.get()) # Reveals str
If your subclass is also generic, you can use the following:
from typing import TYPE_CHECKING, TypeVar, Generic
from queue import Queue
_T = TypeVar("_T")
if TYPE_CHECKING:
class _MyQueueBase(Queue[_T]): pass
else:
class _MyQueueBase(Generic[_T], Queue): pass
class MyQueue(_MyQueueBase[_T]): pass
task_queue: MyQueue[str]
reveal_type(task_queue.get()) # Reveals str
In Python 3.9, we can just inherit directly from Queue[str]
or Queue[T]
since its [queue.Queue
](https://docs.python.org/3/library/queue.html#queue.Queue implements {py:meth}__class_getitem__
, so the class object can be subscripted at runtime without issue.
使用存根中定义的类型,但不在运行时使用¶
有时,您正在使用的存根可能会定义您希望重用的类型,但这些类型在运行时并不存在。 天真地导入这些类型将导致您的代码在运行时失败,并出现“ImportError”或“ModuleNotFoundError”。 与前面的部分类似,这些可以通过使用 typing.TYPE_CHECKING
来处理:
from __future__ import annotations
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from _typeshed import SupportsRichComparison
def f(x: SupportsRichComparison) -> None
使用导入符号时需要使用 “from future import annotations” 以避免出现 “NameError”。 有关更多信息和注意事项,请参阅有关future annotations
的部分。
Using types defined in stubs but not at runtime
Sometimes stubs that you're using may define types you wish to re-use that do not exist at runtime. Importing these types naively will cause your code to fail at runtime with ImportError
or ModuleNotFoundError
. Similar to previous sections, these can be dealt with by using typing.TYPE_CHECKING
:
from __future__ import annotations
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from _typeshed import SupportsRichComparison
def f(x: SupportsRichComparison) -> None
The from __future__ import annotations
is required to avoid a NameError
when using the imported symbol. For more information and caveats, see the section on future annotations
.
使用内置的泛型¶
从Python 3.9(585
)开始,标准库中许多集合的类型对象支持运行时订阅。 这意味着您不再需要从 typing
导入等效项; 您可以简单地使用内置集合或来自 collections.abc
的集合:
from collections.abc import Sequence
x: list[str]
y: dict[int, str]
z: Sequence[str] = x
Python 3.7 及更高版本中对使用此语法的支持也很有限:如果您使用 “from future import annotations”,mypy 将在注释中理解此语法。 但是,由于 Python 解释器在运行时不支持此功能,因此请确保您了解 future comments import
注释中提到的注意事项 en/latest/runtime_troubles.html#future-annotations)。
Using generic builtins
Starting with Python 3.9 (585
), the type objects of many collections in the standard library support subscription at runtime. This means that you no longer have to import the equivalents from typing
; you can simply use the built-in collections or those from collections.abc
:
from collections.abc import Sequence
x: list[str]
y: dict[int, str]
z: Sequence[str] = x
There is limited support for using this syntax in Python 3.7 and later as well: if you use from __future__ import annotations
, mypy will understand this syntax in annotations. However, since this will not be supported by the Python interpreter at runtime, make sure you're aware of the caveats mentioned in the notes at {ref} future annotations import
.
使用Union的 X | Y 语法¶
从 Python 3.10 PEP 604
开始,您可以将联合类型拼写为 x: int | str
,而不是x:typing.Union[int, str]
。
Python 3.7 及更高版本中对使用此语法的支持也很有限:如果您使用“from future import annotations”,mypy 将在注释、字符串文字类型、类型注释和存根文件中理解此语法。 但是,由于 Python 解释器在运行时不支持这一点(如果计算,int | str
将引发 TypeError: unsupported operand type(s) for |: 'type' and 'type'
),请确保 了解 future 注释 import<future-annotations>
的注释中提到的警告。
Using X | Y syntax for Unions
Starting with Python 3.10 PEP 604
, you can spell union types as x: int | str
, instead of x: typing.Union[int, str]
.
There is limited support for using this syntax in Python 3.7 and later as well: if you use from __future__ import annotations
, mypy will understand this syntax in annotations, string literal types, type comments and stub files. However, since this will not be supported by the Python interpreter at runtime (if evaluated, int | str
will raise TypeError: unsupported operand type(s) for |: 'type' and 'type'
), make sure you're aware of the caveats mentioned in the notes at future annotations import<future-annotations>
.
使用typing模块的新功能¶
您可能会发现自己想要使用早期版本的 Python 中添加到 typing
模块的功能,例如,在 Python 3.6 中使用 Literal
、Protocol
、TypedDict
中的任何一个。
最简单的方法是安装并使用 PyPI 中的 typing_extensions 包进行相关导入,例如:
from typing_extensions import Literal
x: Literal["open", "close"]
如果您不想依赖在较新的 Python 上安装的 typing_extensions
,您也可以使用:
import sys
if sys.version_info >= (3, 8):
from typing import Literal
else:
from typing_extensions import Literal
x: Literal["open", "close"]
这与以下 PEP 508
依赖项规范配合得很好:typing_extensions; python_version <“3.8”
Using new additions to the typing module
You may find yourself wanting to use features added to the {py:mod}typing
module in earlier versions of Python than the addition, for example, using any of Literal
, Protocol
, TypedDict
with Python 3.6.
The easiest way to do this is to install and use the typing_extensions
package from PyPI for the relevant imports, for example:
from typing_extensions import Literal
x: Literal["open", "close"]
If you don't want to rely on typing_extensions
being installed on newer Pythons, you could alternatively use:
import sys
if sys.version_info >= (3, 8):
from typing import Literal
else:
from typing_extensions import Literal
x: Literal["open", "close"]
This plays nicely well with following PEP 508
dependency specification: typing_extensions; python_version<"3.8"
创建日期: 2023年7月6日