============================ 2.12 审查清理文本字符串 ============================ ---------- 问题 ---------- 一些无聊的幼稚黑客在你的网站页面表单中输入文本"pýtĥöñ",然后你想将这些字符清理掉。 ---------- 解决方案 ---------- 文本清理问题会涉及到包括文本解析与数据处理等一系列问题。 在非常简单的情形下,你可能会选择使用字符串函数(比如 ``str.upper()`` 和 ``str.lower()`` )将文本转为标准格式。 使用 ``str.replace()`` 或者 ``re.sub()`` 的简单替换操作能删除或者改变指定的字符序列。 你同样还可以使用2.9小节的 ``unicodedata.normalize()`` 函数将unicode文本标准化。 然后,有时候你可能还想在清理操作上更进一步。比如,你可能想消除整个区间上的字符或者去除变音符。 为了这样做,你可以使用经常会被忽视的 ``str.translate()`` 方法。 为了演示,假设你现在有下面这个凌乱的字符串: .. code-block:: python >>> s = 'pýtĥöñ\fis\tawesome\r\n' >>> s 'pýtĥöñ\x0cis\tawesome\r\n' >>> 第一步是清理空白字符。为了这样做,先创建一个小的转换表格然后使用 ``translate()`` 方法: .. code-block:: python >>> remap = { ... ord('\t') : ' ', ... ord('\f') : ' ', ... ord('\r') : None # Deleted ... } >>> a = s.translate(remap) >>> a 'pýtĥöñ is awesome\n' >>> 正如你看的那样,空白字符 ``\t`` 和 ``\f`` 已经被重新映射到一个空格。回车字符\r直接被删除。 你可以以这个表格为基础进一步构建更大的表格。比如,让我们删除所有的和音符: .. code-block:: python >>> import unicodedata >>> import sys >>> cmb_chrs = dict.fromkeys(c for c in range(sys.maxunicode) ... if unicodedata.combining(chr(c))) ... >>> b = unicodedata.normalize('NFD', a) >>> b 'pýtĥöñ is awesome\n' >>> b.translate(cmb_chrs) 'python is awesome\n' >>> 上面例子中,通过使用 ``dict.fromkeys()`` 方法构造一个字典,每个Unicode和音符作为键,对应的值全部为 ``None`` 。 然后使用 ``unicodedata.normalize()`` 将原始输入标准化为分解形式字符。 然后再调用 ``translate`` 函数删除所有重音符。 同样的技术也可以被用来删除其他类型的字符(比如控制字符等)。 作为另一个例子,这里构造一个将所有Unicode数字字符映射到对应的ASCII字符上的表格: .. code-block:: python >>> digitmap = { c: ord('0') + unicodedata.digit(chr(c)) ... for c in range(sys.maxunicode) ... if unicodedata.category(chr(c)) == 'Nd' } ... >>> len(digitmap) 460 >>> # Arabic digits >>> x = '\u0661\u0662\u0663' >>> x.translate(digitmap) '123' >>> 另一种清理文本的技术涉及到I/O解码与编码函数。这里的思路是先对文本做一些初步的清理, 然后再结合 ``encode()`` 或者 ``decode()`` 操作来清除或修改它。比如: .. code-block:: python >>> a 'pýtĥöñ is awesome\n' >>> b = unicodedata.normalize('NFD', a) >>> b.encode('ascii', 'ignore').decode('ascii') 'python is awesome\n' >>> 这里的标准化操作将原来的文本分解为单独的和音符。接下来的ASCII编码/解码只是简单的一下子丢弃掉那些字符。 当然,这种方法仅仅只在最后的目标就是获取到文本对应ACSII表示的时候生效。 ---------- 讨论 ---------- 文本字符清理一个最主要的问题应该是运行的性能。一般来讲,代码越简单运行越快。 对于简单的替换操作, ``str.replace()`` 方法通常是最快的,甚至在你需要多次调用的时候。 比如,为了清理空白字符,你可以这样做: .. code-block:: python def clean_spaces(s): s = s.replace('\r', '') s = s.replace('\t', ' ') s = s.replace('\f', ' ') return s 如果你去测试的话,你就会发现这种方式会比使用 ``translate()`` 或者正则表达式要快很多。 另一方面,如果你需要执行任何复杂字符对字符的重新映射或者删除操作的话, ``translate()`` 方法会非常的快。 从大的方面来讲,对于你的应用程序来说性能是你不得不去自己研究的东西。 不幸的是,我们不可能给你建议一个特定的技术,使它能够适应所有的情况。 因此实际情况中需要你自己去尝试不同的方法并评估它。 尽管这一节集中讨论的是文本,但是类似的技术也可以适用于字节,包括简单的替换,转换和正则表达式。