============================== 15.11 用Cython写高性能的数组操作 ============================== ---------- 问题 ---------- 你要写高性能的操作来自NumPy之类的数组计算函数。 你已经知道了Cython这样的工具会让它变得简单,但是并不确定该怎样去做。 ---------- 解决方案 ---------- 作为一个例子,下面的代码演示了一个Cython函数,用来修整一个简单的一维双精度浮点数数组中元素的值。 :: # sample.pyx (Cython) cimport cython @cython.boundscheck(False) @cython.wraparound(False) cpdef clip(double[:] a, double min, double max, double[:] out): ''' Clip the values in a to be between min and max. Result in out ''' if min > max: raise ValueError("min must be <= max") if a.shape[0] != out.shape[0]: raise ValueError("input and output arrays must be the same size") for i in range(a.shape[0]): if a[i] < min: out[i] = min elif a[i] > max: out[i] = max else: out[i] = a[i] 要编译和构建这个扩展,你需要一个像下面这样的 ``setup.py`` 文件 (使用 ``python3 setup.py build_ext --inplace`` 来构建它): .. code-block:: python from distutils.core import setup from distutils.extension import Extension from Cython.Distutils import build_ext ext_modules = [ Extension('sample', ['sample.pyx']) ] setup( name = 'Sample app', cmdclass = {'build_ext': build_ext}, ext_modules = ext_modules ) 你会发现结果函数确实对数组进行的修正,并且可以适用于多种类型的数组对象。例如: :: >>> # array module example >>> import sample >>> import array >>> a = array.array('d',[1,-3,4,7,2,0]) >>> a array('d', [1.0, -3.0, 4.0, 7.0, 2.0, 0.0]) >>> sample.clip(a,1,4,a) >>> a array('d', [1.0, 1.0, 4.0, 4.0, 2.0, 1.0]) >>> # numpy example >>> import numpy >>> b = numpy.random.uniform(-10,10,size=1000000) >>> b array([-9.55546017, 7.45599334, 0.69248932, ..., 0.69583148, -3.86290931, 2.37266888]) >>> c = numpy.zeros_like(b) >>> c array([ 0., 0., 0., ..., 0., 0., 0.]) >>> sample.clip(b,-5,5,c) >>> c array([-5. , 5. , 0.69248932, ..., 0.69583148, -3.86290931, 2.37266888]) >>> min(c) -5.0 >>> max(c) 5.0 >>> 你还会发现运行生成结果非常的快。 下面我们将本例和numpy中的已存在的 ``clip()`` 函数做一个性能对比: :: >>> timeit('numpy.clip(b,-5,5,c)','from __main__ import b,c,numpy',number=1000) 8.093049556000551 >>> timeit('sample.clip(b,-5,5,c)','from __main__ import b,c,sample', ... number=1000) 3.760528204000366 >>> 如你所见,它快了一些——考虑到NumPy版本的核心代码是用C语言写的,这还挺有趣。 ---------- 讨论 ---------- 本节利用了Cython类型的内存视图,极大的简化了数组的操作。 ``cpdef clip()`` 声明了 ``clip()`` 同时为C级别函数以及Python级别函数。 在Cython中,这个是很重要的,因为它表示此函数调用要比其他Cython函数更加高效 (比如你想在另外一个不同的Cython函数中调用clip())。 类型参数 ``double[:] a`` 和 ``double[:] out`` 声明这些参数为一维的双精度数组。 作为输入,它们会访问任何实现了内存视图接口的数组对象,这个在PEP 3118有详细定义。 包括了NumPy中的数组和内置的array库。 当你编写生成结果为数组的代码时,你应该遵循上面示例那样设置一个输出参数。 它会将创建输出数组的责任给调用者,不需要知道你操作的数组的具体细节 (它仅仅假设数组已经准备好了,只需要做一些小的检查比如确保数组大小是正确的)。 在像NumPy之类的库中,使用 ``numpy.zeros()`` 或 ``numpy.zeros_like()`` 创建输出数组相对而言比较容易。另外,要创建未初始化数组, 你可以使用 ``numpy.empty()`` 或 ``numpy.empty_like()`` . 如果你想覆盖数组内容作为结果的话选择这两个会比较快点。 在你的函数实现中,你只需要简单的通过下标运算和数组查找(比如a[i],out[i]等)来编写代码操作数组。 Cython会负责为你生成高效的代码。 ``clip()`` 定义之前的两个装饰器可以优化下性能。 ``@cython.boundscheck(False)`` 省去了所有的数组越界检查, 当你知道下标访问不会越界的时候可以使用它。 ``@cython.wraparound(False)`` 消除了相对数组尾部的负数下标的处理(类似Python列表)。 引入这两个装饰器可以极大的提升性能(测试这个例子的时候大概快了2.5倍)。 任何时候处理数组时,研究并改善底层算法同样可以极大的提示性能。 例如,考虑对 ``clip()`` 函数的如下修正,使用条件表达式: :: @cython.boundscheck(False) @cython.wraparound(False) cpdef clip(double[:] a, double min, double max, double[:] out): if min > max: raise ValueError("min must be <= max") if a.shape[0] != out.shape[0]: raise ValueError("input and output arrays must be the same size") for i in range(a.shape[0]): out[i] = (a[i] if a[i] < max else max) if a[i] > min else min 实际测试结果是,这个版本的代码运行速度要快50%以上(2.44秒对比之前使用 ``timeit()`` 测试的3.76秒)。 到这里为止,你可能想知道这种代码怎么能跟手写C语言PK呢? 例如,你可能写了如下的C函数并使用前面几节的技术来手写扩展: :: void clip(double *a, int n, double min, double max, double *out) { double x; for (; n >= 0; n--, a++, out++) { x = *a; *out = x > max ? max : (x < min ? min : x); } } 我们没有展示这个的扩展代码,但是试验之后,我们发现一个手写C扩展要比使用Cython版本的慢了大概10%。 最底下的一行比你想象的运行的快很多。 你可以对实例代码构建多个扩展。 对于某些数组操作,最好要释放GIL,这样多个线程能并行运行。 要这样做的话,需要修改代码,使用 ``with nogil:`` 语句: :: @cython.boundscheck(False) @cython.wraparound(False) cpdef clip(double[:] a, double min, double max, double[:] out): if min > max: raise ValueError("min must be <= max") if a.shape[0] != out.shape[0]: raise ValueError("input and output arrays must be the same size") with nogil: for i in range(a.shape[0]): out[i] = (a[i] if a[i] < max else max) if a[i] > min else min 如果你想写一个操作二维数组的版本,下面是可以参考下: :: @cython.boundscheck(False) @cython.wraparound(False) cpdef clip2d(double[:,:] a, double min, double max, double[:,:] out): if min > max: raise ValueError("min must be <= max") for n in range(a.ndim): if a.shape[n] != out.shape[n]: raise TypeError("a and out have different shapes") for i in range(a.shape[0]): for j in range(a.shape[1]): if a[i,j] < min: out[i,j] = min elif a[i,j] > max: out[i,j] = max else: out[i,j] = a[i,j] 希望读者不要忘了本节所有代码都不会绑定到某个特定数组库(比如NumPy)上面。 这样代码就更有灵活性。 不过,要注意的是如果处理数组要涉及到多维数组、切片、偏移和其他因素的时候情况会变得复杂起来。 这些内容已经超出本节范围,更多信息请参考 `PEP 3118 `_ , 同时 `Cython文档中关于“类型内存视图” `_ 篇也值得一读。