附录 A#
Appendix A
Answers and Hints to Selected Exercises
Chapter 1#
Section 1.1#
1. \(115^\circ\)
3. \(A=52^\circ\), \(B=104^\circ\)
5. \(45^\circ\)
7. \(A=9^\circ\), \(B=81^\circ\)
8. \(0.011^\circ\) and \(89.989^\circ\)
9. \(25\) miles
10. \(111.8\) ft
15. Hint: Are the opposite sides of the four-sided figure inside the circle parallel?
Section 1.2#
- 1.
\(\sin\;A = 5/13\), \(\cos\;A = 12/13\), \(\tan\;A = 5/12\),
\(\csc\;A = 13/5\), \(\sec\;A = 13/12\), \(\cot\;A = 12/5\);
\(\sin\;B = 12/13\), \(\cos\;B = 5/13\), \(\tan\;B = 12/5\),
\(\csc\;B = 13/12\), \(\sec\;B = 13/5\), \(\cot\;B = 5/12\)
- 3.
\(\sin\;A = 7/25\), \(\cos\;A = 24/25\), \(\tan\;A = 7/24\),
\(\csc\;A = 25/7\), \(\sec\;A = 25/24\), \(\cot\;A = 24/7\);
\(\sin\;B = 24/25\), \(\cos\;B = 7/25\), \(\tan\;B = 24/7\),
\(\csc\;B = 25/24\), \(\sec\;B = 25/7\), \(\cot\;B = 7/24\)
- 5.
\(\sin\;A = 9/41\), \(\cos\;A = 40/41\), \(\tan\;A = 9/40\),
\(\csc\;A = 41/9\), \(\sec\;A = 41/40\), \(\cot\;A = 40/9\);
\(\sin\;B = 40/41\), \(\cos\;B = 9/41\), \(\tan\;B = 40/9\),
\(\csc\;B = 41/40\), \(\sec\;B = 41/9\), \(\cot\;B = 9/40\)
- 7.
\(\sin\;A = 1/\sqrt{10}\), \(\cos\;A = 3/\sqrt{10}\), \(\tan\;A = 1/3\),
\(\csc\;A = \sqrt{10}\), \(\sec\;A = \sqrt{10}/3\), \(\cot\;A = 3\);
\(\sin\;B = 3/\sqrt{10}\), \(\cos\;B = 1/\sqrt{10}\), \(\tan\;B = 3\),
\(\csc\;B = \sqrt{10}/3\), \(\sec\;B = \sqrt{10}\), \(\cot\;B = 1/3\)
- 9.
\(\sin\;A = 5/6\), \(\cos\;A = \sqrt{11}/6\), \(\tan\;A = 5/\sqrt{11}\),
\(\csc\;A = 6/5\), \(\sec\;A = 6/\sqrt{11}\), \(\cot\;A = \sqrt{11}/5\);
\(\sin\;B = \sqrt{11}/6\), \(\cos\;B = 5/6\), \(\tan\;B = \sqrt{11}/5\),
\(\csc\;B = 6/\sqrt{11}\), \(\sec\;B = 6/5\), \(\cot\;B = 5/\sqrt{11}\)
- 11.
\(\cos\;A = \sqrt{7}/4\), \(\tan\;A = 3/\sqrt{7}\),
\(\csc\;A = 4/3\), \(\sec\;A = 4/\sqrt{7}\), \(\cot\;A = \sqrt{7}/3\)
- 13.
\(\sin\;A = \sqrt{6}/\sqrt{10}\), \(\tan\;A = \sqrt{6}/2\),
\(\csc\;A = \sqrt{10}/\sqrt{6}\), \(\sec\;A = \sqrt{10}/2\), \(\cot\;A = 2/\sqrt{6}\)
- 15.
\(\sin\;A = 5/\sqrt{106}\), \(\cos\;A = 9/\sqrt{106}\),
\(\csc\;A = \sqrt{106}/5\), \(\sec\;A = \sqrt{106}/9\), \(\cot\;A = 9/5\)
- 17.
\(\sin\;A = \sqrt{40}/7\), \(\cos\;A = 3/7\), \(\tan\;A = \sqrt{40}/3\),
\(\csc\;A = 7/\sqrt{40}\), \(\cot\;A = 3/\sqrt{40}\)
19. \(\cos\;3^\circ\)
21. \(\sin\;44^\circ\)
23. \(\csc\;13^\circ\)
25. \(\sin\;77^\circ\)
27. \(\tan\;80^\circ\)
30. Hint: Draw a right triangle with an acute angle \(A\).
33. Hint: Draw two right triangles whose hypotenuses are the same length.
- 37.
(a) \(\sqrt{13}/4\)
(b) \(4\sqrt{3}/\sqrt{13}\)
(c) \(3/\sqrt{13}\)
Section 1.3#
1. \(102.7\) ft
3. \(241.1\) ft
4. \(274\) ft
7. \(1062\) mi
9. \(0.476\) in
11. \(1.955\) in
13. \(0.4866\) in
14. Partial answer: \(DE=a\;\cot\;\theta\;\,\cos^2\,\theta\)
15. \(c=13\), \(A=22.6^\circ\), \(B=67.4^\circ\)
17. \(a=0.28\), \(c=2.02\), \(B=82^\circ\)
19. \(b=6.15\), \(c=6.84\), \(B=64^\circ\)
21. \(a=6.15\), \(c=6.84\), \(A=64^\circ\)
23. \(a=\sqrt{2}\), \(b=\sqrt{2}\), \(B=45^\circ\)
25. (a) \(0.944\) cm (b) \(2.112\) cm
27. (a) \(\sqrt{3}\;a\) (b) \(35.26^\circ\)
29. \(1379.5\) ft \(= 0.2613\) mi
Section 1.4#
1. QII
3. QIV
5. negative \(y\)-axis
7. QIII
9. QIV
11. QI, QIII
13. QI, QIV
15. QI, QII
17. \(43^\circ\)
19. \(54^\circ\)
21. \(85^\circ\)
- 23.
\(\sin\;\theta = \sqrt{3}/2\) and \(\tan\;\theta = -\sqrt{3}\); \(\sin\;\theta = -\sqrt{3}/2\) and \(\tan\;\theta = \sqrt{3}\)
- 25.
\(\sin\;\theta = \sqrt{21}/5\) and \(\tan\;\theta = \sqrt{21}/2\); \(\sin\;\theta = -\sqrt{21}/5\) and \(\tan\;\theta = -\sqrt{21}/2\)
- 27.
\(\cos\;\theta = \sqrt{3}/2\) and \(\tan\;\theta = 1/\sqrt{3}\);
\(\cos\;\theta = -\sqrt{3}/2\) and \(\tan\;\theta = -1/\sqrt{3}\)
29. \(\cos\;\theta = \pm 1\) and \(\tan\;\theta = 0\)
31. \(\cos\;\theta = 0\) and \(\tan\;\theta\) is undefined
- 33.
\(\sin\;\theta = 1/\sqrt{5}\) and \(\cos\;\theta = -2/\sqrt{5}\);
\(\sin\;\theta = -1/\sqrt{5}\) and \(\cos\;\theta = 2/\sqrt{5}\)
- 35.
\(\sin\;\theta = 5/13\) and \(\cos\;\theta = 12/13\); \(\sin\;\theta = -5/13\) and \(\cos\;\theta = -12/13\)
37. No
39. No
Section 1.5#
1. (a) \(328^\circ\) (b) \(148^\circ\) (c) \(212^\circ\)
3. (a) \(248^\circ\) (b) \(68^\circ\) (c) \(292^\circ\)
7. \(25^\circ\), \(155^\circ\)
9. \(65^\circ\), \(295^\circ\)
11. 38^circ, \(218^\circ\)
13. \(169^\circ\), \(191^\circ\)
15. \(D=\left( \frac{ab^2}{a^2 + b^2}, \frac{a^2 b}{a^2 + b^2} \right)\)
Chapter 2#
Section 2.1#
1. \(b = 7.4\), \(c = 15.1\), \(C = 120^\circ\)
3. \(a = 9.7\), \(b = 10.7\), \(C = 95^\circ\)
5. \(b = 65.1\), \(B = 136.5^\circ\), \(C = 18.5^\circ\)
7. No solution
9. \(b = 24.9\), \(B = 59.9^\circ\), \(C = 70.1^\circ\); \(b = 9.9\), \(B = 20.1^\circ\), \(C = 109.9^\circ\)
11. \(422\) mi/hr
15. \(5.66\) cm and \(12.86\) cm
16. Hint: Think geometrically.
Section 2.2#
1. \(a = 10.6\), \(B = 40.9^\circ\), \(C = 79.1\)
3. \(A = 47.9^\circ\), \(b = 8.2\), \(C = 72.1^\circ\)
5. No solution
7. \(4.13\) and \(8.91\) cm
9. \(50.5^\circ\), \(59^\circ\), \(70.5^\circ\)
11. \(7\) cm
15. Hints: One of the angles in the formulas is a right angle; also, use the definition of cosine.
Section 2.3#
1. \(A = 79.1^\circ\), \(B = 40.9^\circ\), \(c = 10.6\)
3. \(A = 47.9^\circ\), \(b = 8.2\), \(C = 72.1^\circ\)
5. No
6. Yes
11. Hint: Think of Exercise 10.
Section 2.4#
1. \(22.55\)
3. \(9.21\)
5. \(\frac{3}{4}\sqrt{15} \approx 2.905\)
7. \(12.21\)
9. Hints: The diagonals break the quadrilateral into four triangles; also, consider formulas (22)-(24).
Section 2.5#
1. \(R = 2.63\), \(r = 0.69\)
3. \(R = 3.51\), \(r = 1.36\)
5. \(R = 24.18\), \(r = 1.12\)
- 12.
(c) Twice as large
(d) Hint: Bisect each angle.
Chapter 3#
Section 3.1#
1. \(\theta = 270^\circ\)
3. Hint: See Example 3.7.
19. \(\tan\;\theta = \pm\,\sin\;\theta / \sqrt{1 - \sin^2 \;\theta} = \pm\,\sqrt{1 - \cos^2 \;\theta} / \cos\;\theta\)
Section 3.2#
3. \(\sin\;(A+B) = \frac{1020}{1189}\), \(\cos\;(A+B) = -\frac{611}{1189}\), \(\tan\;(A+B) = -\frac{1020}{611}\)
4. \((\sqrt{6} + \sqrt{2})/4\)
5. \(2 - \sqrt{3}\)
15. Hint: For \(a \ne 0\) and \(b \ne 0\), draw a right triangle with legs of lengths \(a\) and \(b\).
Section 3.3#
9. Hint: Is \(\sin\;A + \cos\;A\) always positive?
11. \(1/2\)
Section 3.4#
13. Hint: One way to do this is with the Law of Tangents. Another way is with the Law of Sines.
Chapter 4#
Section 4.1#
1. \(\pi/45\)
3. \(13\pi/18\)
5. \(-3\pi/5\)
7. \(36^\circ\)
9. \(174^\circ\)
Section 4.2#
1. \(9.6\) cm
3. \(11\pi\) in
5. \(54.94\) in
7. \(12.86\) ft
8. \(34.18\)
9. \(38.26\)
11. \(3.392\) and \(9.174\)
12. \(3.105828541\)
Section 4.3#
1. \(1.512~\text{cm}^2\)
3. \(24.5~\text{m}^2\)
5. \(269.1~\text{cm}^2\)
7. \(5~\text{cm}^2\)
9. \(\pi/2~\text{cm}^2\)
11. \(0.017~\text{cm}^2\)
13. \(21.46\)
15. \(48.17\)
17. \(0.522~\text{m}^2\)
19. Sector area is quadrupled, arc length is doubled.
Section 4.4#
1. \(\nu=6\) m/sec, \(\omega=1.5\) rad/sec
3. \(\nu=6.6\) m/sec, \(\omega=0.94\) rad/sec
5. \(\nu=3.75\) m/sec, \(\omega=1.875\) rad/sec
7. \(3.375\) rad
9. \(32\) rpm and \(21.33\) rpm
11. \(40.84\) in/sec
Chapter 5#
Section 5.1#
13. Partial answer: \(\sec\;\theta = OQ\)
Section 5.2#
1. amplitude \(= 3\), period \(= 2\), phase shift = \(0\)
3. amplitude \(= 1\), period \(= 2\pi/5\), phase shift = \(-3/5\)
5. amplitude \(= 1\), period \(= 2\pi/5\), phase shift = \(-\pi/5\)
7. amplitude \(= 1\), period \(= \pi\), phase shift = \(3\pi/2\)
9. amplitude undefined, period \(= \pi/2\), phase shift = \(3\pi/2\)
11. amplitude undefined, period \(= \pi\), phase shift = \(1/2\)
13. max. at \(x=\pm\,\sqrt{\pi/2}\), \(\pm\,\sqrt{5\pi/2}\), \(\pm\,\sqrt{9\pi/2}\), \(...\) min. at \(x=\pm\,\sqrt{3\pi/2}\), \(\pm\,\sqrt{7\pi/2}\), \(\pm\,\sqrt{11\pi/2}\), \(...\)
15. amplitude \(= 0.5\), period \(= \pi\)
17. out of phase
18. in phase
19. amplitude \(= \sqrt{34}\), period \(= 2\)
21. amplitude \(= 2\,\sqrt{2}\), period \(= 2\pi\)
23. \(2\pi\)
25. \(6\)
27. amplitude envelope: \(y=\pm\,x^2\)
29. No
Section 5.3#
1. \(\pi/4\)
3. \(0\)
5. \(\pi\)
7. \(\pi/2\)
9. \(0\)
11. \(-\pi/3\)
13. \(\pi/7\)
15. \(4\pi/5\)
17. \(\pi/6\)
19. \(-\pi/9\)
21. \(12/13\)
23. \(\pi/2\)
25. \(\pi/2\)
Chapter 6#
Section 6.1#
1. \(\frac{3\pi}{4} + \pi k\)
3. \(\frac{3\pi}{10} + \frac{2\pi k}{5}\)
5. \(\pm\,\frac{\pi}{6} + \pi k\)
7. \(-0.821 + 2\pi k\), \(3.963 + 2\pi k\)
9. \(\frac{\pi}{4} + \pi k\)
11. \(\frac{2\pi k}{3}\)
Section 6.2#
1. \(x=1.89549426703398093962\)
Section 6.3#
1. \(-1+i\)
3. \(-13i\)
5. \(-1-i\)
7. \(i\)
9. \(-i\)
11. \(i\)
13. \(-i\)
15. \(i\)
17. Let \(z=a+bi\). Then \(\overline{z}=a-bi\), so \(\overline{\left(\overline{z}\right)} = \overline{a-bi}=a+bi=z\).
23. Hint: Use Exercise 20.
25. \(\sqrt{13}\,\text{cis}\;56.3^\circ\)
27. \(\sqrt{2}\,\text{cis}\;315^\circ\)
29. \(\text{cis}\;0^\circ\)
33. \(81\,\text{cis}\;56^\circ\)
35. \(1.5\,\text{cis}\;253^\circ\)
37. \(\sqrt[6]{2}\,\text{cis}\;15^\circ\), \(\sqrt[6]{2}\,\text{cis}\;135^\circ\), \(\sqrt[6]{2}\,\text{cis}\;255^\circ\)
39. \(\frac{1}{2} + \frac{\sqrt{3}}{2}\,i\), \(-1\), \(\frac{1}{2} - \frac{\sqrt{3}}{2}\,i\)
41. \(\text{cis}\;36^\circ\), \(\text{cis}\;108^\circ\), \(\text{cis}\;180^\circ\), \(\text{cis}\;252^\circ\), \(\text{cis}\;324^\circ\)
Section 6.4#
1. \((-3\sqrt{3},-3)\)
3. \((\sqrt{3},-1)\)
5. \((-1/\sqrt{2},-1/\sqrt{2})\)
7. \((\sqrt{10},251.6^\circ)\)
9. \((2\sqrt{5},333.4^\circ)\)
11. \(r = 6\,\cos\;\theta\)
13. \(r^2 \,\cos\;2\theta = 1\)
14. \(r = 3/(2 - \cos\;\theta)\)